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Convective liquid flow is studied below a rotating six-blade mixer with inclined plane blades, 
situated in the axis of a cylindrical baffled vessel. Flow regime of the charge is turbulent. The 
flow pattern is expressed by a field of streamlines obtained by numerical solution of the Laplace's 
equation for boundary condition of the first type (Dirichlet's problem). Boundaries of the region, 
for which the mentioned partial differential equation is solved together with the boundary condi
tions, are determined on a basis of the model resulting from radial distribution of axial pressures 
on the flat vessel bottom. The mean relative deviation of the flow pattern based on the theory and 
the experimental one is 21%. The field of streamlines in a system with an axial mixer and radial 
baffles in turbulent flow of the charge is affected primarily by the relative mixer and vessel sizes 
and further by the relative distance of the mixer between the vessel bottom and liquid surface. 
The effect of kinematic viscosity of the charge affects considerably both the flow pattern and 
intensity of convective flow in the studied region. The obtained results are valid for the range 
of Reynolds numbers Re E <9'0.103

; 2'0.105
). 

Presented description of the velocity field represents an attempt for obtaining suf
ficient information concerning the distributjon of streamlines or the flow pattern 
above the vessel bottom on the basis of a relatively simple experimental measurement. 
It considers an axial mixer situated in a cylindrical vessel with radial baffles in turbu
lent flow of the charge. 

The flow pattern in a mechanically mixed charge was studied for the first time by Rushton 
and 0ldshue1 . On basis of their qualitative studies they divided the high-speed mixers rotating 
in a cylindrical vessel with rfoldi.al baffles according to the prevailing direction of flow leaving the 
blades of the rotating mixer. Porcelli and Marr2 have made a detailed analysis of the axial flow 
pattern of a propeller mixer. They have determined that in the considered system there exist 
two characteristic types of circulating loops forming a flow pattern: circulation intersecting the 
regiQn of a rotating mixer characterizing the so-called primary flow and circulation which is not 
intersecti)1~_!\.W ,~bo·ve mentioned region and corresponding to the so-called secondary flow. These 
results we!~ , ~~r~;l1e · eon~iqe.re~It'ype: .of mixer experimentally confirmed3 by the study of the mo-
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tion of a tracer particle and by a photographical tracer method in vicinity of a rotating mixer. 
Similar conclusions were obtained from results of studies of a velocity field in a system with 
a six-blade mixer with inclined plane blades where the oriented Pitot tube or a photographical 
tracer method were used4 - 8. From these results was also obtained the field of streamlines in this 
system by a qualitative numerical solution of the Laplace equat ion and the assumptions result
ing in description of flow by use of the above mentioned distribution of circulating loops in the 
system9 ,10 were confirmed. On basis of these results and experimentally determined power 
inputs of mixersll conclusions can be made on the most suitable arrangement of the mixed 
system for homogenisation process and the relation between the homogenisation effects of a mi
xer and its pumping effect may be determined. But these conclusions are valid only for the charge 
as a whole and it is not possible to make conclusions on their basis on the spacial homogeneity 
of the system as concerns the circulation intensity, rate of energy dissipation ·etc. as it would be 
possible when sufficient informations are available concerning the local conditions in an a rbitrary 
point of the system. The measurements which, on the basis of a simple but sufficiently accurate 
method , give information on local characteristics at some points of the charge mixed by an axial 
mixer have already been made -- a method was developed and applied for measurements of local 
distribution of axial pressures on a flat bottom of a vessel12

. With liquid flowing in vicinity of such 
bottom' due to the reversal of its direction the charge is acting with a force on the bottom 13. 

This forced action may be used for determination of the liquid flow rate in vicinity of the bottoml4
• 

The flow rate calculated on basis of the impuls theorem for the free jet impacting on the fl at 
plane differs from the pumping capacity of the mixer and its value depends on the geometrical 
conditions in the mixed system12

. It can be greater than the pumping capacity i.e. it may also 
include part of the induced flow or on the contrary it may be smaller. A more detailed description 
of the flow in vicinity of the bottom based on the analysis of axial pressures acting on individual 
parts of the bottom leads to conclusions on the liquid flow rate of the charge both below the region 
of the rotating mixer and at the vessel wallIS. 

By use of four simplifying assumptions and by combining the Bernoulli equation with the 
impuls theorem for a free axially symmetrical liquid jet I6 a complete information on the flow 
rate of the charge at the bottom was obtained. This flow rate was in agreement with the flow 
rate in the considered region calculated from the results of direct measurements of the velocity 
field (determined by the Pitot tube). The detailed flow pattern formed by the streamlines from 
which the flow intensity in any part of the studied region could be determined have not been 
obtained. For such description of the spacial flow distribution the given solution does not suf
fice and further analysis is needed. 

In this study an effort is made to find a relation between the radial distribution 
of axial pressures on the vessel bottom and the velocity field in the region between 
the rotating axial mixer and the bottom. 

THEORETICAL 

Let us consider a mixed system formed by a cylindrical vessel with a flat bottom 
with four radial baffles at the wall and with an axially situated axial mixer. The 
system is filled by a Newtonian charge so that the liquid surface, when at rest H, 
equals the inside diameter of the vessel D. The flow regime of the charge is turbulent. 
The coordinate system is formed by cylindrical coordinates r, qJ and z with the origin 
situated into the intersection of the cylindrical axis of symmetry with the plane 
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of the bottom. The coordinate z is thus identical with the axis of symmetry and 
is oriented upwards. In the system defined in this way the region VI below the 
mixer is chosen (Fig. 1). The boundaries of this region are: the surface of the 
cylinder of radius Ro, annular area Sl with the radii Ro and R1, area S2 = S2(R, Z) 
situated between the circles with coordinates (R1' Zl) and (R3' Z3), annular area 
S3 with radii of the boundary circles R3 and R4 and the corresponding part of the 
bottom, wall and the adjacent radial baffles. The axial mixer is situated at the distance 
112 above the bottom and is rotating in such direction so as to force the charge to flow 
toward the vessel bottom. In the region VI to which our st~dy is limited, liquid flows 
in such direction that it enters the region through the annular area Sl and it leaves 
it through the annular area S3' 

For the mixed system the following simplifying assumptions are made: 1) The mixed 
charge is incompressible; 2) system is axially symmetrical; 3) liquid flow is steady; 
4) system is exchanging mass with the surrounding only through areas Sl and S3; 
5) flow in the system is considered to be irrotational. 

Let us now define dimensionless numbers by relations:* 

R = rJD, Z = zJH, (1a,b) 

(2a,b) 

(3) 

The COI).tinuity equation for the considered system may be written in the form16 

(4) 

and the field of streamlines in the region VI may be expressed by the Laplace equa
tion 16 

(5) 

For the given geometrical arrangement of the mixed system holds H=D so that the 
dimensionless streamline function, with respect to the transformation equation 
(la)-(3), is given by relations 

Wrad = (ljn) (djDY (ljR) (oPjoZ) , (6a) 

and 

Wax = -(ljn) (djD)2 (ljR) (oPjoR) . (6b) 

Dashed symbols represent values averaged in time. 
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Relation (5) may be solved in the region VI for the boundary condition 

IJI == 0, [R = Ro; Z E <0; Zl) ] ' 

IJI == 0, [R = R 4 ; Z E <0; Z3) ] ' 

IJI == 0, [Z = 0; R E <Ro; R4 ) ] • 

3077 

(7a) 

(7b) 

(8) 

Identities (7a) to (8) are expressing mathematically validity of the assumption 4). 
For cross-sectional areas Sj, (i = 1,3) through which liquid enters and leaves the 
region VI the boundary conditions are given by the functions 

which may be determined by integration of relations (6a) and (6b) 

FIG. 1 

Region VI 

I 

- - - R I 
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'Pl(R) = 1t(D/d)2 fR w..xAR) dR, 
Ro 

(lOa) 

'P3(R) = -1t(D/d)2 fR Wax ,3(R) dR, 
R4 

(lOb) 

where for Wax,j, (Zj = const; i = 1,3) are substituted values determined experimental
ly in areas S 1 and S3 ' With respect to validity of the continuity equation (4) for the 
considered region with regard to assumptions 2) and 4) equality must hold 

(11) 

and projection of plane S2 into the plane (R , Z) is the geometrical locus of maximum 
values of function 

while the shape of the curve, which is the considered projection of the plane S2, must 
be determined. Relation (12) represents the boundary condition for the given region 
of arguments which together with relations (7a) to (8) and (9) gives the necessary 
system for solution of the partial differential equation (5). This solution, i.e. the first 
boundary problem, may be for the considered system determined by some of the 
standard numerical methods by a computer17. The boundary conditions for solu
tion of the Laplace equation (5) may be determined from the radial profile of axial 
pressures acting on the vessel bottom. Flow of the charge creating the discussed 
axial pressures is flowing through the region VI (Fig. 1) and informations concerning 
this volume are obtained from the experimentally obtained12 shape of curve Pax= 
= PaxCr) (Fig. 2). Other simplifying assumptions for the volume VI are made: 6) Li
quid enters and leaves the volume VI through cross-sectional areas S 1 and S 3 only 
in the axial dirrection; 7) second power of velocity in each cross-sectional area Sl 
and S3 is directly proportional to the static pressure on the vessel bottom in the point 
of axial (vertical) projection of the considered point ; 8) mass forces are negligible. 

Boundaries of region VI are then located in the characteristic points on the diagrams 
of axial pressures (Fig. 2): 1) Radial coordinate Ro (inside radius of region VI) 
is given by the location of the point A on the profile of axial pressures where the deriva
tive 8Pax/8r changes expressively from approximately zero to non-zero value. 2) Ra
dial coordinate Rl (outside radius of cross-section S 1) is determined by the location 
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of the point B on the profile of axial pressures with the zero value of the function. 
3) Radial coordinate R3 (inside radius of cross-section S3) is given by location 
of the point C on the profile of axial pressures where the value of the function is also 
zero. 4) Radial coordinate R4 (outside radius of region VI) is given by the external 
boundaries of axial profile of radial pressures. It has constant value R4 = 0'5, 
since the external boundary of region VI is identical with the inside wall of the vessel. 

With regard to assumptions (6) and (7), the cross-section area for flow at R I , 

after its reversal due to the vessel bottom, can be considered identical with the cross
sectional area S 1> and the cross-sectional area for flow at R 3 , before its reversal 
due to the vessel bottom, can be considered identical with cross-sectional area S3' 
Heights Zl and Z2 of cross-sections Sl and S3 above the bottom can be determined 
from the known quantities Ro, R l , R3 and R4 by use of relations 

(13a,b) 

for above mentioned value of the quantity R4 . 

Radial profiles of dimensionless axial velocity component W.x,i = Wax,;(R), 
[i = 1,3] can be determined in cross-sections S I and S3 from the corresponding 
profiles of axial pressures at the bottom across the considered regions. If the change 
of flow direction caused by the plane bottom equals to n/2, we can write with respect 
to assumption (7) 

(14) 

so that the axial velocity component at the point r equals to 

(14a) 

If we introduce the dimensionless pressure on the bottom by 

(15) 

Eq. (14) can be, by used of definitions (1 a) and (2a), arranged into the form 

W.x(R) = [Pax(R)]1/2 . (16) 

In this way, the basis can be obtained for solution of Eqs (lOa) and (lOb) from 
which follows the dimensionless stream function P in cross-sections Sl and S3' 
Maximum values of the flow function P max are reached in the point R = Rl as well 
as in the point R = R 3. The curve P max = P max(R, Z) thus represents the projection 
of the wall of stream tube, i.e. part of the boundary of reqion VI' From the radial 
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profile of the quantity Pax between points Band C (Fig. 2) follows that its characteris
tics is different from that in regions below cross-sections Sl and S3. There the flow is 
considered to be already directed after the reversal of the charge at the bottom, and 
the profile Pax = Palr) indicates the average energy relations in the flow. This region 
can be divided into two sub-regions limited partially by cylindrical surfaces with radii 
R t (r 1> respectively) and Rir 2, respectively), partially by cylindrical surfaces with radii 
Rz(rz , resp.) and R3(r3' resp.) and by the area S2 = S2(R, Z). Location of r2 on the 
radial jet is considered in that point of profile Pax = Palr) in which the quantity Pax 
has its minimum, i.e . where simultaneously holds 

(8Pax/8r)jr=r2 = 0, 

(82Pax/8r2)jr=r2 > o. 

(I7a) 

(17b) 

These relations are with regard to definitions (I a) and (I5) valid as well as for di
mensionless quantities R and Pax. From Fig. 2 it followed, that the mentioned point 
on the radial profile of axial pressures may be easily located. 

For sub-regions limited by area S2 = Sir, z) or S2 = S2(R, z) we write the Ber
noulli equation for real liquid and the continuity equation16 ,18 

2 2 

g~--: + p~~~/Q + ~~72 = g~F) + P:~;;/Q + [1 + ~J~)J ;(r)"/2, (I8a) 

21tr1Z1~ = 21trz(r) ;(0, (I8b) 

~l(r) = e[l - wt/w(r)]; rE <r1; r2), (18e) 

2 2 

g~Fj + Ps~(;)·/Q + -~(~) /2 = g--;; + p~~~/Q + [1 + ~~(;)J ~~'/2 , (I9a) 

21trz(r) w(r) = 2n:r3Z3w3 , (19b) 

f3(~5 = [(;(~) - ;:)/;;J2
; r E <r2 ; r3)· (1ge) 

Dotted-lines above quantities in the given equations represent average values 
across the considered cross-sectional area for flow characterized by the radial co
ordinate r. 

In the first sub-region of the oriented flow reversal along the bottom (between 
locations r 1 and r2) is considered reduction of its axial coordinate z, by contraction 
of the cross-sectional area and in the second sub-region (between locations r 2 and 
1"3) is, on the contrary, considered expansion of the cross-sectional area along the 
bottom caused by increase of its axial coordinate z. In point I" = r2 is the system of 
equations (18) and (19) valid simultaneously - the contraction of the cross-sectional 
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area is the largest. If we introduce, similarly as by definitions (2a) and (2b) , the di
mensionless velocities 

Wi = ;-:j1tdn ,. [i = 1, 3] , 

W(r) = w(r)j1tdn ; 

and if with regard to assumption (7) we can write 

-Ps~~: - pst(r) = Pax( r), [rE <r1 ; r2)], 

Pst ,3 - pst(r) = Pax(r) , [r E <r2; r3 )]' 

(20a) 

(20b) 

(21 a) 

(21 b) 

the systems of equations (18) and (19) can be solved for the height of flow Z(R), 
in point R along the vessel bottom. According to assumption (8) and with regard 
to equations (21 a) and ( 21 b) and by use of definitions of dimensionless quantities 
(1 a), (1 b), (15) and (20a,b), the solution of systems (18) and (19) can be written in the 
form 

W(R) = ((ej2) WI + {(e2j4) W~ + (1 + e) (W~ - 2Pax(R)]}1/2)/(1 + e) , (22a) 

Z(R) = ZlRIW1 /W(R) R; R E<Rl ; R2) , 

W(R) = W3 - Pa.(R)/W3 , 

Z(R) = Z3R3 W3/W(R) R; R E <R2; R3) ' 

(22 b) 

(23a) 

(23b) 

For contraction of the tube the constant e in Eq. (18e) equals to 18 e = 0·45. 
Quantities WI and W2 are the average liquid velocities in the cross-sectional area of the 
cylinder jacket of radius Rl and height Zl, or of radius R3 and height Z3' With regard 
to validity of assumptions (6) and (7), the mentioned velocities equal to average velo
cities across the cross-sectional areas S 1 or S3' Therefore they can be calculated from 
absolute values of total axial forces faxl and f ax3 acting in cross-sectional areas S 1 

and S2 which are calculated by integration of profiles of radial pressures across the 
vessel bottom corresponding to the cross-sections Sl and S3' Dimensionless quanti
ties corresponding to faxl and fax3 are defined by relations 

Fax! == Ifaxd/[e(1tdn)2 D2] , 

Fax3 == Ifax31/[Q(1tdnY D2] 

and for calculation of dimensionless average velocities W l and W3 we have 
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WI = [FaxIjn(Ri - RG)]I/2 , 

W3 = [FaxJ/n(O'25 - Rm l
/

2 
. 
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(25a) 

(25b) 

Eqs (25a) and (25b) represent the force with which the charge acts on the bottom 
in the regions of the cross-sectional areas S I and S3 when, according to the assump
tion (6), the change of the charge direction which is acting by a force on the bottom, 
takes place under angle nj2 in both cases. 

EXPERIMENTAL 

The axial pressures on the vessel bottom were considered as the dependent variable with radial 
distribution used for determination of the field of streamlines in the charge flowing above the 
bottom. Velocities and pressures in this area were measured directly by the oriented Pitot tubes 
and were used for verification of the proposed model. 

The above discussed characteristics of the flowing charge were measured under different geo
metrical arrangement of the mixed system given by the size of the used axial mixer and by its 
distance from the bottom and ·the charge surface at rest. Dynamic viscosity and density of the 
charge were measured as well. In the experiments, the number of the mixer revolution was varied 
but it was dependent both on geometrical conditions of the mixed system and on material pro
perties of the charge. But all these quantities could have been considered, in respect to the axial 
pressures on the bottom as well as to the velocity and the pressure in an arbitrarily chosen point 
of the system, independent variables and were fixed or determined in both types of the experiments 
in the same way to enable comparison of the experimental results. By this procedure also the even
tual different accuracy of measurement of these quantities did not affect unfavourably in com
parison of dependent variables expressed in a dimensionless form. A great attention was already 
paid4 ,5.7 ,8,12 to the description of measurement of the dependent variables. All experiments 
were carried out in the model equipment consisting of a cylindrical vessel made of perspex with 
a flat bottom of diameter D = 290 mm filled with the charge (distilled water or aqueous solution 
of glycerol). The height of the liquid surface at rest H was equal to the vessel diameter. The vessel 
was provided with four baffles, O'lD wide, reaching the bottom. A mixer with six plane blades 
inclined under the angle 45° was used. The mixer was situated in the axis of the cylindrical vessel 
and its rotation was always directed so as to pump the liquid toward the bottom. Mixers of several 
relative sizes d/ D were used and were situated in various relative distances h2 / D above the vessel 
bottom. Geometric characteristics: H = D = 290 mm, b = O'lD, di D = 1/ 3; 1/4; 1/ 5, h2 / D = 
= 0'418; 1/ 3; 1/ 4; 1/ 5, h = 0·2d. Data on the charge are given in Table I. 

By evaluating the results of experiments, the boundary conditions for solution of Eq. (5) 
could have been determined and compared with the velocity field determined directly in the 
charge flowing above the bottom. Also the effect was analyzed of geometrical arrangement of the 
mixed system and of material properties of the charge on the flow pattern in the region below 
the horizontal plane of the mixer symmetry. By methods described in papers4 •5 ,7 of this series 
were obtained radial profiles of the total pressure measured by oriented Pitot tubes in several 
directions at a given axial distance from the bottom. From these pressure data were calculated 
radial profiles of the axial and radial vector components of the mean local velocity from 
which it was possible to determine the field of streamlines in the studied region VI of the mixed 
system. This field of streamlines was determined for the known velocity field, by the use of defini
tions (6a) and (6b) for boundary conditions (7a), (7b) and (8). Calculation of axial and radial 
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TABLE I 

Charge Parameters 

Distilled water 

(! = 988 kg cm - 3 , 11 = 0·55 cP 

di D 1/ 5 
Re.1O- 4 13·1 

1/4 
14·2 

Distilled water 

1/3 
13-9 

(! = 1000 kg m- 3
, 11 = 1·0 cP 

di D 1/ 5 
Re . 1O- 4 7·27 

7·30a 

1/4 
7·87 
7·92a 

1/ 3 
7·76 
7·80a 

Aqueous soln. of glycerol 

(! = 1084 kg m3
, 1/ = 2·5 cP 

di D 1/ 5 
Re.1O- 4 3·16 

1/ 4 
3-42 

1/3 
3·37 

Aqueous soln . of glycerol 

(!= 1143kgm- 3
, 1/ = 8·5cP 

di D 
Re.1O - 4 

1/ 5 
0·979 

1/4 
1·06 

1/ 3 
}·05 

3083 

a Total pressures measured by oriented Pitot tubes. Other conditions for axial pressures measured 
on the vessel bottom. 

profiles of the stream function If! and the estimate of its accuracy resulting from the accuracy 
of measurements by the oriented Pitot tubes was the same as was described and discussed in the 
already published papers of this series. 

By the procedure described in papers12 ,15 of this series were obtained radial profiles of axial 
pressures acting on the flat bottom of the vessel. From these profiles, measured in the given mixed 
system on the bottom between two adjacent radial baffles, was calculated the arithmetic mean 
for the given position on the radial ray (i.e. for the identical radial distance). This mean quantities 
were transformed into a dimensionless form by Eq. (15). For the given charge (characterized 
by its kinematic viscosity 11/ (!) the values of dimensionless axial pressures were then averaged 
for all numbers of revolutions used. In such a way obtained radial profiles of dimensionless axial 
pressures on the vessel bottom were plotted graphically (i.e. in dependence on the dimensionless 
radial coordinate R) from which the values of radial coordinates of boundaries of the region VI 
were read off: coordinates Ro, R l , R z and R 3. Axial coordinates Zl and Z3 of the areas Sl and 
S3 were then calculated . By use of Eqs (J3a) and (J3b). Absolute values of axial forces faxl and 
fax3 acting on regions of the bottom S 1 and S3 were calculated from the experimental radial 
profiles Pax = Pa,(r) by the use of relations 

f
R1D 

Ifaxli = 21t Pax(r) r dr , 
RoD 

(26a) 

(26b) 

where in Eq. (26b) was taken into account that R4 = 0·5. These absolute values were then trans
formed by Eqs (24a) and (24b) into Faxl and Fad . From these values were then, similarly as 
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for profiles Pax = Po.(R), calculated the arithmetic means for the given charge and mixed system 
from results of measurements made at several numbers of mixer revolution. From thus obtained 
dimensionless axial forces the mean dimensionless velocities WI and W3 in the cross-sections SI 
and S3 by Eqs (25a) and (25b) were calculated. 

From radial profiles of the dimensionless axial pressure on the bottom Pax = Pa/R), plotted 
graphically, were calculated by the use of relation (l6) the radial profiles of the dimensionless 
axial velocity component in the cross-sections S1 and S3 under given conditions in the mixed 
system. From these profiles were calculated by numerical integration radial profiles of the di
mensionless stream function 'P in the given boundaries - see Eqs (JOa) and (lOb). Velocities W 
and heights Z were calculated of relations (2b), (22) and (23). 

~~. 

:~ 
::\~7 ; 
~~ 

05 01, 0,) 02 01 RH 0 

FIG. 3 

Field of Streamlines in the Region VI 
(d/ D = 1/ 3; Re = 13-90 . 104

) Calculated 
from Radial Profiles of Axial Pressures on 
Vessel Bottom 

I hzl D = 1/4, 'Pmax = 0'143; II h2!D = 
= 1 / 3, 'Pm• x = 0'1l0;IIIh2 / D = 0·418 'Pm• x 

= 0·095. 
Point 0 () () __ ~ • 

'P 0·0250·050 0·075 0·100 0·125 0·150 

005 

0·5 Oi, 0,) 02 0 1 RH 0 

FIG. 4 

Field of Streamlines in the Region VI (d = 

= 1/ 3: Re = 7·76. 104 ) Calculated from Ra
dial Profiles of Axial Pressures on Vessel Bot
tom 

I h21D = 114, 'Pm• x = 0'149; II h2 /D = 

= 113, 'Pmax = 0'115; III h21D = 0'418, 
'Pl'lax = 0·094. 
Point 0 () () __ ~ • 

'P 0·025 0·050 0·075 0·100 0·125 0·150 
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Boundary conditions for solution of Eq. (5) across the region VI are given partially by position 
of their boundaries, partially by the shape of the stream function between cross-sections Sl and 
S3' Accuracy with which all these quantities are determined depends first of all on accuracy with 
which the radial profiles of axial pressures and the corresponding axial forces acting on the 
respective parts of the bottom are determined and how adequate is the proposed model. Coordi
nates of boundaries of region VI' which can be considered exactly determined, are the axial co
ordinates of the bottom (Z = 0) and the radial coordinates of the internal surface of the vessel 
wall (R4 = 0'5). Accuracy with which other quantities affecting solution of Eq. (5) are determined 
is not absolute but can be estimated with respect to accuracy of the experiments made. Accuracy 
ot determination of the boundaries of the region VI: Quantity R 1 , relative accuracy ± 1 %; R 3 , 

± 1%; Z3' ±1%; Ro' ± 3%; R 2 , ± 2%. Accuracy of determination of the velocity field on the 
boundaries of the region VI: Quantity Faxl ' relative accuracy ± 2'5%; F ax3 , ±2'5%; WI' ±2'0%; 
W 3, ± 2%; Pax' ± 5% (Re > 104

); Pax' ± 10% (Re ~ 104
); 'Pm,x' ± 5% (Re > 3.104

, h2 / D ~ 
~ 1/ 3); 'Pmax ' ± 10% (Re > 3.104

, hZ / D > 1/ 3); Z, ±5% (R E <R1 ; R 3 ), 'P = 'Pmax)' 
All these facts resulted in radial profiles Z = Z(R), ('P = 'P max) which were continuous in the 

regions <R1 ; R 2 ) and <R2 ; R 3 ) but in the point R = R z a step change up to ';"'Z = 0·01 ap
peared. This difference is, with respect to accuracy with ~hich Zl and Z3 are determined, quite 
comprehensible but nevertheless the dependence Z = Z(R) , ('P = 'Pmax) had to be graphically 
smoothed with regard to the mentioned discontinuity across the whole region S2' It can be sum
marised that curves Z = Z(R), ('P = 'P max) characterizing projection of the area S2 = S2(R, Z) 
were determined with ± 0'015 accuracy in the direction of axis Z. 

FIG. 5 

Field of Streamlines in the Region VI (d/ D = 

= 1/ 3; Re = 3·37. 104
) Calculated from Ra

dial Profiles of Axial Pressures on Vessel Bot
tom 

I h 2 !D = 1/4, 'Pm", = 0'137; II h1 / D = 

= 1/ 3; 'Pm", = 0'113; III h1 / D = 0'418, 
'Pilla, = 0·100. 
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The Laplace partial differential equation (5) was solved numerically with boundary conditions 
(7a) , (7b)-(9) and (12) by the overrelaxation method19

. The solution was modified for eventual 
variation of coordinates of boundaries of the considered region as values of the coordinates 
characterizing the boundaries of the region VI were changing. According to the preliminary 
tests, the size of increments of numerical solution was chosen l:iR = l:iZ = 0·005. For the given 
division and required accuracy of calculation given by the mean difference between results of two 
consecutive iterations e = 5'0 . 10- 5 , the calculation took approximately 2·5 minutes by the 
computer Elliott 503 for one configuration of the region VI' The described numerical calculation 
resulted in values of the stream function in nodes of the mesh from which by interpolation the 
coordinates of individual streamlines could have been obtained i.e. curves with constant value 
of the stream function 'P', corresponding to th~ m~ntioned boundary conditions. 

RESULTS AND DISCUSSION 

Fields of streamlines determined in the region VI from radial profiles of axial pres
sures by use of the proposed model and from the velocity field measured directly 
in this region can be compared. The corresponding axial profiles of the dimensionless 
stream function '1' are compared for the given mixed system and material properties 
of the charge by use of the mean relative deviation :* 

From the results of this comparison the defined relative deviations fall into the range 
of 0 - 50%, while their mean values in the given axial profile are for compared cases 
in the range of9-31%. Deviation of the quantity '1' from quantity 'l'exp is systemati
cal: actual value of the stream function is larger than that resulting from the model. 
Mean values of quantity .,1 for diD = 1/3, h2/D = 1/4, Re = 7'76.104

, Z1 = 0'136, 
Z2 = 0·1 are for region Z<O-O'13) : for R = 0'1, .,1 = 21'3%; R = 0'15, .,1 = 15 '5%; 
R = 0'2, .,1 = 29 '2%; R = 0'25, .,1 = 30'8%; R = 0'3, .,1 = 26'0%; R = 0·35, .,1 = 
= 20'0%; R = OA, .,1 = 15'8%; R = OA5, .,1 = 8'6%. Mean values of quantity .,1, 

for the studied mixed system are: for diD = 1/3, .,1 = 20'9%; diD = 1/4, .,1 = 21'2%; 
diD = 1/5, .,1 = 20'9%. 

On basis of these results the field of streamlines in the region VI can be constructed 
by use of radial profiles of axial pressures ac ting on the vessel bottom, with an average 
accuracy of 21 %. This accuracy can be considered sufficient for calculations of the 
heat or mass transfer intensity in the region of the vessel bottom in the design of me
chanically mixed process units. 

Validity of Simplifying Assumptions for Flow of the Charge in the Region VI 

The mixed charge is incompressible as liquids are used (i.e. water or aqueous solutions of glycerol) 
which is characterized by the respective value of quantity (oVjoph = const. 17

. 

Axial coordinate Zo is here considered on the bottom, Z = o. 
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Axial symmetry of the mixed system formed by a cylindrical vessel provided with radial baffles 
and axially situated axial mixer does not in fact exist. However, with regard to the bottom area 
which is affected by radial baffles it is possible to neglect this deformation of the velocity field. 
The effect of baffles is most profound in the region below the cross-section S3' while in the region 
below cross-section Sl and in most cases also in the region below the cross-section Sz there is 
no dependence of axial pressures on location of the radial jet between the baffles. Baffles are af
fecting in the part of the region VI below cross-section S3 first of all location of the boundary R3 
(and partly of R z as well) which is dependent on location of the rad'al jet. Baffles are also af
fecting directly values of the measured axial pressures which in corresponding points of radial 
jets between two neighbouring baffles differ by up to 10%. By averaging these values with values 
in other radial jets (as we have done), mean values can be obtained and their standard deviations 
are according to our estimate not worse than 3%. A certain asymmetry in the region below the 
cross-section S3 can be in this way eliminated by averaging the values of experimental axial 
pressures. Then, neither the flow rates across the mentioned regions do vary, due to the system 
assymmetry, by more than ± 3%. It can be concluded that the field of streamlines, with the ex
ception of the area in close vicinity of the baffles, can be considered axially symmetric in the whole 
region VI' By this conclusion can be analogically considered the whole space of the mixed charge 
since neither configuration nor the flow conditions in the remaining part of the system differ 
from region VI (ref. 5,8). 

Flow of the mixed charge was steady as the experiments were considerably longer than the 
time necessary for bringing the charge from the standstill into motion2o• At the assumption of qua
sistationary turbulent field (which is usually e.g.21 for ordinary types of turbulence fulfilled), 
the experiments had to be at least by three orders longer than the slowest velocity fluctuations22• 

The assumption of value VI being a closed system is correct due to the accuracy with which the 
distribution of axial pressures on the vessel bottom is determined especially with respect to above 
mentioned asymmetry of the region below the cross-sectional area S3' Greater deviations at 
at Re::::; 1'0.104

, for h2 / D > 1/4, and at Re ::::; 3'0.104
, for h2 / D > 1/ 3, seem to be the result 

of a greater effect of the charge viscosity where deceleration of the flow in the region below the 
area S2 already originates gradual reversal of liquids layers, i.e. the charge leaves the volume VI 
already via area Sz. The obtained results on velocity distribution boundaries of the region 
VI (namely, across the cross-section S3) were therefore corrected by averaging values of quantity 
'P max at the points Rl and R 3 . Deviation from reality, especially in the region of this cross-section, 
is higher than in those cases where such correction was unnecessary. From this also results limi
tation of the used measuring method if because of viscosity charge assumption 4) cannot be con
sidered as adequate. It is necessary to point out that results, in which the boundary R2 is not 
found, also cannot be evaluated by the proposed procedure since the force acting in the region Sl 
overlaps the force acting in the region S3 and it is therefore impossible to determine reliably 
boundaries of the considered volumes. This limiting condition has already been mentioned in the 
analysis of force action of the charge on the bottom15 and should also be taken into considera
tion. 

Basic condition for use of the Laplace equation (5) for description of flow in the considered 
system is the existence of irrotational flow in the region VI' It is obvious that this assumption cannot 
be fulfilled in the charge below the plane of symmetry of the axial mixer. Failure to meet this 
assumption is the main reason for deviation between the theoretically determined and experi
mentally found streamlines fields, especiaIly with regard to differing profiles 'Pj = 'Pj(Z), (R j = 
= const.), which for the case of solution of Eq. (5) are linear, while in fact they are not straight 
as the velocity profile is pushing the streamlines closer together In direct vieinity of the bottom. 

For location of the cross-sections Sl and Sz assumption 6) can be considered fulfiIled. This 
foIlows from results of measurements of the velocity field in the charge between the mixer and 
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vessel bottom. A certain systematic deviation appears close to the outside boundary of the region 
Sl (radius R1), where a gradual reversal of layers of the liquid stream from downward to hori
zontal direction due to the vessel bottom already takes place. With respect to numerical solution 
of Eq. (5) and to information obtained from radial profiles of axial pressures, it was impossible 
to remove this shortcoming in the solution itself. 

Assumption 7) results from modelling of the pressure effects accompanying a change in direction 
of a very thin free jet (streamline) in a considered point under vertical impact on the vessel bottom. 
Of course, this grossly simplifies the studied system and the results of measurements of veloci ty 
and pressure fields between the rotating mixer and the vessel bottom4

-
7 have demonstrated, that 

this assumption is not quite fulfilled. In the mentioned region the value of directly measured 
static pressure differs considerably from the hydrostatic pressure. This means that especially the 
cross-sectional area S 1 need not equal to the cross-sectional area for flow in the point Rl after 
reversal of the stream due to the bottom and thus the quantity Zl calculated from relation (I3a) 
is not correct. This concerns as well the coordinate Z3' the cross-section S3 and consequently 
the coordinates of curve Z = Z(R), ('1' = '1'maJ, i.e. projection of the area S2' The profi les 
Wax ,l = Wax,l (R), (d/ D = const. , Zl = const.), as well as the coordinate Rl calculated on basis 
of the discussed assumption, are proving the above given results as they do not correspond to 
the respective radial profiles determined from direct velocity and pressure field measurements. 
This is in spite of the fact that from the flow rates of the charge above the bottom determined 
by use of the experimental radial profiles of axial pressures above the bottom, a sufficient agree
ment has been obtained with the flow rate resulting from direct measurements of the velocity 
and pressure fields by the oriented Pitot tubes15 . Point Zl is therefore located (determined only 
from values of coordinates Ro and R1) considerably lower than results from relation (J 3a) 
and the same can be said about location of the point Z3 (determined from values of the coordina
tes R 3). In the latter case, however, the deviation from actual value is not great since axial profiles 
of quantities '1' and '1'exp in the region below area S3 are in a good agreement. On the contrary 
axial profiles of the discussed quantities have the greatest deviations in the points where the 
radial coordinate is close to the coordinate R1 : values '1'exp are up to 50% greater than the cor
responding values of '1'. 

The above discussed disagreement plays perhaps the greatest role in deviations of the fields 
of streamlines in region VI based on the proposed model and those determined experimentally. 
Since it is impossible to determine from axial profiles of radial pressures the non-zero value 
of L1Pst without aditional measurements in the flowing charge, the last assumpt;on must have 
been llltroduced. This is because we intended to have the complete solution based only on a single 
information: radial profile of axial pressures acting on the bottom. In spite of the mentioned 
shortcoming, further experimental studies (usually very time-consuming) are not necessary; 
of course the results are affected by the above given error. 

Validity of assumption 8) can be verified by the field of streamlines below area So, where 
a gradual contraction and expansion of the studied flow takes place. Streamlines, which d~e to the 
mentioned spacial changes considerably change their location, are never representing more than 
one third of the over-all flow rate. Changes in location of the centre of gravity of cross-sectional 
area are therefore not exceeding one sixth of the change of the axial coordinates Zl and Z 2' 
or Z2 and Z3 which in comparison to values of the mean kinetic and potential energies of the 
considered flow is negligible. But it is necessary to mention here, that in case the discussed axial 
displacement of the centre of gravity of the flow below area S2 must be taken into account in the 
solution , the direct calculation (i.e. solution of the system of Eqs (22) and (23) would change 
into calculation by successive approximations. Contraction of the cross-sectional area in depen
dence on the radial coordinate may also be used for establishing how negligible is the change 

Collection Czechoslov. Chem. Commun. /Vol. 38/ (1973) 



Studies on Mixing. XXXVII. 3089 

of axial position of the centre of gravity of the cross-sectional area in the stream flowing along 
the bottom. From the presented model the minimum height Z2 of this stream should be in the 
point R 2 . This condition is in many cases not fulfilled, i.e. even if the radial coordinate is greater 
than R 2 , contraction of the cross-section area takes place. This change of contraction, though 
observable never exceeds the accuracy with which the dependence Z = Z(R), ('1' = 'I'm,,)' is 
determined which is another reason for accepting the assumption 8). 

- Finally it can be concluded on evaluation of validity of simplifying assumptions, which are 
indispensable for determination of the field of streamlines from the experimental axial pressure 
acting on the vessel bottom, that all assumptions whose validity has been satisfactorily proved 
can be analogically considered to be valid practically in the whole range of the studied conditions, 
i.e. for studied geometrical arrangements of the mixed system and material properties of the 
charge. Further, introduction of those assumptions whose validity has not been fully proved 
is not motivated by insufficient understanding of mechanism of the studied operation but by an 
endeavour to describe the studied process by as simple relations as possible that can be solved 
in an adequate manner on a computer by methods of numerical mathematics i.e. with the required 
accuracy and length of calculation. The presented solution meets these requirements. 

Effect of Material Properties of the Charge and Geometrical Arrangements of the Mixed 
System on the Flow Pattern at the Vessel Bottom 

Effect of kinematic viscosity of the mixed liquid on the flow pattern at the bottom can be 
explained by greater dissipation of mechanical energy transformed into heat in the charge with 
increasing viscosity. Correspondingly, also the mean flow velocity decreases for about constant 
volumetric flow so that the cross-sectional area is larger than in case of the charge with a lower 
viscosity (Figs 3- 5). At a lower mean velocity and at lower values of the velocity gradient across 
the considered region the rate of dissipation of mechanical energy on the one hand increases 
due to the increased liquid viscosity, while on the other hand it decreases due to the decreased 
specific kinetic energy of liquid. So the flow pattern in a mixed system is significantly afrected 
by material properties of the homogeneous mixed liquid while the global quantities characterizin.g 
the mixed system, as e.g. its power input or specific power input, do not practically changell . 

In the space below the plane of symmetry of a rotating axial mixer at turbulent flow of the charge 
is dissipated in average 60% of power input of the mixers, though the mentioned volume repre
sents only 1/4-1/3 of the whole charge volume. This spacial distribution of dissipation will 
therefore decisively affect the overall balance of mechanical energy in the whole system. From 
the requirement, that such conditions should be established in the system at which minimum 
of the energy is dissipated, results the change of shape and size of the region VI with increasing 
kinematic viscosity of the charge. This also means that some considerations concerning the ideality 
of liquid flowing along the bottom made earlier1S

, must have been corrected. It is necessary 
to mention here, that expansion of the region of coaxial cylinder with radius Ro with increasing 
viscosity is probably related with friction forces acting in this region which are setting into the 
irregular motion {upward and horizontal) of the other liquid layers flowing downward s. This 
explanation is not contradictory to that one made earlier, concerning the growth of the region VI 
with increasing kinematic viscosity of the charge as contribution of this region to the energy 
dissipated by viscous friction into heat is negligible in the region below the plane of mixer sym
metry. Both the energy dissipated and the mean velocity of flow are very small fractions of the 
corresponding quantities in the whole volume VI' 

The relative mixer size d/ D is represented by different densities of streamlines in the volume VI 
and by the shape of the considered region. The density of streamlines and thus the flow intensity 
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at the bottom as well increase with decreasing ratio diD. From more than twenty five measure
ments, the density of streamlines is proportional to the first power of reciprocal value of this 
ratio. For the total volumetric flow rate at the bottom to exceed the pumping capacity of the 
mixer is decisive not only the mixer size but also its distance from the bottom. Shape of the region 
VI is dependent on the ratio d/ D with changing diameter of the jet from the rotor region. Areas 
Sl and S3 are increasing with the increasing value of d/D (quantity Rl is proportional to the sixth 
root of the ratio d/ D) and the region S2 is decreasing in the corresponding manner. The height 
of the region VI decreases as well if the ratio d/ D decreases. Thus the smaller is the relative size 
of the mixer, the smaller are dimensions of the region VI while the region below the plane S2 
(where flow at . the bottom prevails) is expanding. The region of cylinder of radius Ro also de
creases with the decreasing value of ratio d/ D. Smaller mixer thus guarantees greater flow intensity 
in vicinity of the bottom with a simultaneous decrease of the "dead region" (cylinder of the radius 
Ro) while a larger mixer promotes flow in a greater volume of the charge but the flow intensity 
is smaller. 

The effect of the relative distallce of the mixer from the vessel bottom hz /Dis for all the studied 
mixer sizes the same (Figs 3 - 5) i.e. with increasing distance hz /D the flow intensity of the charge 
considerably decreases in the region VI' From the results of experiments, it is proportional 
to (D/hz)O.4o. The size of the region VI is frequently not affected by the change of quantity 
hz/ D so that the made conclusion results directly from evaluation of the experiments. But if 
hz/D> 1/3, the size of region VI changes with the changing ratio hz /D (see e.g. Fig. 3). Similarly 
with mixers of greater sizes the areas Sl and S3 are increasing, values of coordinates ZI and Z3 
are increasing as well with the region below the plane Sz successively diminishing, e.g. case III in 
Fig. 5. The flow of the charge becomes greater with increasing of the ratio hz/ D when finally bound
aries of regions SI andS3 merge. Thus if Rl = Rz = R 3, a continuous reversal of liquid layers 
from the downward to upward direction takes place without contraction of the stream at the vessel 
bottom. This is also another of limiting conditions when, at a greater value of the ratio hz /D, 
the proposed method for determination of the field of streamlines a t the vessel bottom cannot be 
used any more as determination of boundaries of both streams becomes indeterminable (see 
also considerations made earlier). This is because reliable determination of streamlines which 
are and are not reaching the region of the bottom is not possible. Radius of the region in vicinity 
of the vessel axis where the flow is not oriented (cylinder of the diameter Ro) is increasing with 
increasing distance of the mixer from the vessel bottom as streamlines from the region VI are 
consecutively transferred into the considered region with a simultaneous change of their direction 
(e.g. 4 ). Size of this " dead volume" (i.e. volume with a very slow flow of the charge) thus increases 
with increasing size of the region VI (as in the case of greater values of the ratio d/ D) and the 
mean flow velocity there decreases. 

Effect of Flow Intensity at the Bottom on Mass and Heat Transfer in the Mixed Cl:J.arge 

Liquid motion initiated by a rotating mixer is the usual condition for an effective handling 
of a mechanically mixed operation. Motion of the mixed charge itself is usually not the purpose 
of the operation but it includes heat and/or mass transfer as well. In the following part effect 
of the shape of the field of streamlioes at the bottom of a mixed vessel on heat transfer between 
the bottom and the charge and on homogenisation rate in the charge is discussed. 

Heat transfer between the bottom and the flowing charge mixed by an axial mixer was studied 
by Kupcikz3 • According to this study the heat transfer intensity between the vessel bottom and 
the charge is decreasing with increasing relative distance hz / D of the mixer from the bottom. 
Heat transfer coefficient between the charge and the bottom is at given hydrodynamic conditions 
proportional to (D/hz )O.45. This value is in agreement with the results obtained in this study 
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on the effect of hz / Don flow intensity at the bottom. This agreement confirms that heat transfer 
between the charge and the bottom may be expressed by equations of forced convection, i.e. heat 
transfer mechanism which is above all affected by the intensity of liquid flow in the considered 
region. Similarly, the dissipative character of the flowing charge assumed by the author23 which 
was later verifiedz4 can be, on basis of the analysis of radial profiles of axial pressures acting 
on the bottom, considered as experimentally confirmed. 

Suspension of solid particles in the mixed charge represents the two-phase flow but the velocity 
field in the continuous phase (liquid) is decisive for the force equilibrium at which it is formed . 
This state given by the critical number of revolutions was stud ied for axial types of mixers e.g. 
by ZwieteringZ5 according to which the given quantity is proportional to (D jd)1.8 2 • This value 
is in fair agreement with the results characterizing the effect of quantity d/ D on flow intensity 
of the charge at the vessel bottom. On their basis the conclusion can be made that a smaller 
mixer initiating larger flow rate at the bottom is in turbulent regime at suspension of solid particles 
more advantageous than a relatively larger mixer. With increase of the quantity h2 / D a decrease 
of the critical number of mixer revolutions can be expected. This is because with increasing distance 
between the mixer and bottom the flow intensity of the charge at the bottom decreases and also 
the radius Ro of the "dead region" along the system axis increases. Value of the critical number 
of revolutions will thus obviously increase with increasing distance between the mixer and bottom. 

Spacial distribution of mass transfer rates in the charge at homogenisation of missible liquids 
by rotating mixers has already been studied26 . It has been determined that in the region below 
the plane of symmetry of a rotating mixer the homogenisation rate is considerably greater than 
above this plane. This is in agreement with the conclusions made in this study as the dissipative 
flow region reaches a high turbulent viscosity which is the useful condition for turbulent mass 
transfer. This conclusion is also in agreement with considerations made in studies on the spacial 
dissipation of mechanical energy in the charge with an axial mixer and radial barnes5 as well as 
studies on the dissolving rates of solid phase at mechanical mixing27. Spacial homogeneity of the 
mass transfer rate will thus be reached with mixers situated farther from the bottom as the volume 
of the region in which the considered process takes place will increase at the extense of the 
volume where the homogenisation or dissolving rates are lower. 

The authors thank Prof H. Steidl and Dr V. Kudrna, Chemical Engineering Department, In
stitute of Chemical Technology, Prague I, for many interesting and valuable comments. 

LIST OF SYMBOLS 

b width of radial baffle 
constant 

D vessel diameter (m) 
d mixer diameter (m) 
f force (N) 
g gravitational acceleration (m s - 2) 
H height of charge surface at rest above the bottom (m) 
h width of mixer blade (m) 
h2 vertical distance of the horizontal plane of mixer symmetry from bottom (m) 
n number of elements in the system 
n number of revolutions of the mixer (s -1) 
p pressure (N m - 2) 

radial coordinate, radius (m) 
S dimensionless area 
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T absolute temperature (deg) 
V volume (m3

) 

VI volume of region where the Laplace equation is solved (m3) 

w local liquid velocity (m s -1) 

axial (vertical) coordinate (m) 
rp angular coordinate (deg) 

Fort, Koza, Grackova: 

maximum acceptable error of numerical solution of the Laplace Eq . 
local friction factor 

' I dynamic viscosity of the charge (kg m -1 s - 1) 

I} density charge (kg m - 3) 

III stream function (m3 s - 1) 

F== Ifl / [I}(rtdn)~ D2] dimensionless force 
Pax == P3 .,/ [I}(rtdn)2] dimensionless axial pressure 
R == rj D dimensionless radial coordinate 
Re == nd2 U/11 Reynolds number 
W == Iwl / rtdll dimensionless velocity 
Z == z/ D dimensionless axial (vertical) coordinate 
'P == lJI / nd3 dimensionless stream function 

Superscripts 

related to area Sl of the first stream reversal at bottom 
related to area S3 of second stream reversal at bottom 

ax axial component 
rad radial component 
max maximum value 
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